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ABSTRACT

The U.S. National Blend of Models provides statistically postprocessed, high-resolution multimodel en-

semble guidance, providing NationalWeather Service forecasters with a calibrated, downscaled starting point

for producing digital forecasts.

Forecasts of 12-hourly probability of precipitation (POP12) over the contiguous United States are

produced as follows: 1) Populate the forecast and analyze cumulative distribution functions (CDFs) to be

used later in quantile mapping. Were every grid point processed without benefit of data from other

points, 60 days of training data would likely be insufficient for estimating CDFs and adjusting the errors in

the forecast. Accordingly, ‘‘supplemental’’ locations were identified for each grid point, and data from

the supplemental locations were used to populate the forecast and analyzed CDFs used in the quantile

mapping. 2) Load the real-time U.S. and Environment Canada (now known as Environment and Climate

Change Canada) global deterministic and ensemble forecasts, interpolated to 1/88. 3) Using CDFs from

the past 60 days of data, apply a deterministic quantile mapping to the ensemble forecasts. 4) Dress the

resulting ensemble with random noise. 5) Generate probabilities from the ensemble relative frequency.

6) Spatially smooth the forecast using a Savitzky–Golay smoother, applying more smoothing in

flatter areas.

Forecasts of 6-hourly quantitative precipitation (QPF06) are more simply produced as follows:

1) Form a grand ensemble mean, again interpolated to 1/88. 2) Quantile map the mean forecast using

CDFs of the ensemble mean and analyzed distributions. 3) Spatially smooth the field, similar

to POP12.

Results for spring 2016 are provided, demonstrating that the postprocessing improves POP12 re-

liability and skill, as well as the deterministic forecast bias, while maintaining sharpness and

spatial detail.

1. Introduction

The forecast problem to be discussed in this article is

the production of skillful, reliable, and geographically

detailed precipitation guidance, leveraging the numeri-

cal guidance from one or more numerical weather pre-

diction (NWP) systems and statistically postprocessed
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with short training datasets. Raw NWP precipitation

forecasts, deterministic and probabilistic, are often less

useful than they could be as a result of imperfections

in the underlying prediction system. Forecast guid-

ance may exhibit location-dependent and location-

independent biases. Biases may also differ between

light and heavy precipitation events, perhaps over-

forecasting light precipitation and underforecasting the

heavier precipitation. Ensembles of precipitation pre-

dictions may be underspread and may not offer as

much geographic detail as desired by users. For these

reasons, statistical postprocessing is often relied on to

adjust the current forecast using the discrepancies be-

tween past forecasts and observations and to downscale

the guidance.

Several articles in the recent past have demonstrated

the improvement of probabilistic forecast skill and re-

liability that results from multimodel ensemble combi-

nations of precipitation forecasts (e.g., Hamill 2012,

hereafter H12; Liu and Xie 2014). Presumably different

centers, with different prediction systems, will produce

guidance with somewhat different and compensating

biases and an overall spread larger than that achieved

from any one ensemble prediction system. H12 showed

that 24-h accumulated probability of precipitation

(POP24) from a multimodel ensemble (MME) formed

from European Centre for Medium-Range Weather

Forecasts (ECMWF), Met Office (UKMO), Canadian

Meteorological Centre (CMC), and National Centers

for Environmental Prediction (NCEP) global ensembles

provided generally reliable and skillful forecasts relative

to 18 precipitation analyses over the contiguous United

States. Similar results using MMEs were found by

Candille (2009) and Swinbank et al. (2016, and refer-

ences therein).

Consensus forecasts have long been known to

produce a more accurate forecast than any single indi-

vidual model or forecaster when verified over an ex-

tended period of time (e.g., Vislocky and Fritsch 1997).

Recent studies performed by National Weather Service

(NWS) Central Region forecasters also showed that a

consensus model blending approach could provide a

skillful starting point for NWS digital forecasts (Craven

et al. 2013). Accordingly, the National Weather Service

instituted the National Blend of Models project, called

simply the National Blend hereafter. Under the Na-

tional Blend, the NWS desires to generate calibrated,

high-resolution forecast guidance from statistically

postprocessed multimodel ensembles for use in digital

forecasting at weather forecast offices and national

centers (Glahn and Ruth 2003).

While a straightforward estimation of probabilities

from the four-center MME relative frequencies was

shown in H12 to provide useful probabilistic pre-

cipitation guidance at 18 grid spacing, in the National

Blend there are fewer available data (NCEP and CMC

global forecast data only with this study), and the final

desired output grid spacing over the contiguous United

States (CONUS) is much finer, ;2.5 km. The hope and

expectation is that statistical postprocessing can correct

systematic errors in the mean and spread and can apply

subgrid-scale spatial detail where it is realistic, such as

statistically downscaling to introduce terrain-related

precipitation variability in the western United States.

Can statistical postprocessing realistically improve

upon multimodel ensemble precipitation guidance from

coarser-resolution forecasts? Previously, several au-

thors have demonstrated that with an extended time

series of reforecast and high quality, high-resolution

analyzed training data, it is possible to statistically

postprocess a single model’s output and thus to generate

reliable, skillful, and downscaled probabilistic pre-

cipitation guidance (Hamill and Whitaker 2006; Hamill

et al. 2008, 2013, 2015; Roulin and Vannitsem 2012;

Verkade et al. 2013; Scheuerer and Hamill 2015; Baran

and Nemoda 2016).

Regrettably, a method that has been demonstrated to

produce high quality postprocessed guidance with a

lengthy training dataset and a single-model ensemble

will not necessarily perform optimally with multimodel

ensembles and short training datasets. Hence, it is worth

considering alternative methodologies. Bayesian model

averaging was previously demonstrated using gamma-

distribution kernels (Sloughter et al. 2007; Schmeits and

Kok 2010), as well as gamma and censored gamma-

distribution-fitting methods (Bentzien and Friederichs

2012; Scheuerer 2014). Logistic regression has been tried

in many applications and with variations in formulation

(Hamill et al. 2004; Wilks 2009; Schmeits and Kok 2010;

Messner et al. 2014). However, some of these method-

ologies were developed with single models in mind;

others were developed for higher-resolution systems

where downscaling was less of a concern. Yet othersmay

have been tested only with very limited data, not over a

region such as the CONUS spanning many climatolog-

ical regimes.

For our application, we seek a postprocessing meth-

odology that is capable of providing reliable, highly

skillful, highly detailed, probabilistic postprocessed guid-

ance even when trained with limited, coarse-resolution

training data. It must also produce fields that are visu-

ally acceptable to human forecasters; for example, the

POP12 forecasts should not exhibit small-scale varia-

tions in probability in regions with relatively flat terrain.

To achieve these criteria, we have built a procedure that

combines several established methodologies together

3442 MONTHLY WEATHER REV IEW VOLUME 145



with some novel elements. At the heart of the procedure

is an established technique known as ‘‘quantile map-

ping’’ (Hopson and Webster 2010; Voisin et al. 2010;

Maraun 2013). To apply quantile mapping, one gener-

ates forecast and analyzed cumulative distribution

functions (CDFs) from available forecast and analyzed

data for the grid point of interest. Given today’s pre-

cipitation forecast value at that grid point, one can de-

termine the associated quantile from the forecast CDF

and then replace the forecast with the analyzed value

associated with that same quantile. Quantile mapping

adjusts for bias conditioned on the forecast precipitation

amount, and it does so in a way that avoids the collapse

of spread common with regression approaches when

there is little relationship between the forecast and ob-

served (Wilks 2006, section 2.1.3). Quantile mapping,

when leveraging higher-resolution precipitation ana-

lyses or observations, also implicitly produces a statis-

tical downscaling. To deal with the small training sample

size (the previous 60 days were used here) and other

issues, the quantile-mapping procedure applied here will

include the population of CDFs using ‘‘supplemental

locations.’’ Variants of this approach have previously

been described, such as in Hamill et al. (2008), Mass

et al. (2008), Daly et al. (2008), Hamill et al. (2015), and

Lerch and Baran (2017). Another feature to be applied

here is quantile mapping of today’s forecast values using

surrounding grid points following Scheuerer and Hamill

(2015), a procedure that enlarges the effective ensemble

size and accounts in part for the overconfidence of en-

semble prediction systems in the location of pre-

cipitation features. For POP12, there is an additional

step, the addition of stochastic noise to the quantile-

mapped ensemble values, inspired by dressing and

kernel-density methods seen in articles such as Roulston

and Smith (2003), Fortin et al. (2006), and Sloughter

et al. (2007). A final smoothing is also applied to reduce

the small-scale variations of probability in geographically

flat regions.

In this article, we will also describe a methodology for

QPF06 that renders multimodel ensemble mean de-

terministic precipitation forecasts less biased with re-

spect to the observations, ameliorating the tendency of

ensemble-mean forecasts to overforecast light pre-

cipitation and underforecast heavy amounts. It is based

on a quantile mapping of the multimodel ensemble-

mean forecast to analyzed data.

Below, section 2 will describe the forecast and ana-

lyzed precipitation datasets used in version 3.0 of the

National Blend, operationally implemented 27 July

2017. Section 3 reviews the verification methodologies

that are used in this article. Section 4 describes the

methodology for increasing the sample size used to

populate CDFs through the use of supplemental loca-

tions. Section 5 describes the POP12 algorithm, and

section 6 describes the QPF06 algorithm. Section 7

provides objective verification statistics of the forecasts

before and after postprocessing. Section 8 provides a

discussion and conclusions.

2. Forecast and analyzed precipitation datasets

The National Blend project has been active for several

years, though earlier versions mostly produced experi-

mental postprocessed guidance, and they have not been

described thoroughly in the peer-reviewed literature. The

POP12 and QPF06 techniques described here will be

incorporated into version 3.0 of in the National Blend,

and they represent a more mature product. Because of

the large volumes of data involved, we will examine the

skill of raw and postprocessed guidance for the 0000UTC

cycle forecasts produced during the period of 1 April–

6 July 2016, though data from 21 to 28 June were missing.

Forecasts are also produced operationally from1200UTC

guidance; data from this model cycle were not examined

in this study, but we have no a priori reason to expect the

performance would be different.

For each forecast lead time, the previous 60 days of

coincident forecasts and analyses were used for training.

The use of 60 days represented a compromise based on

judgment. Larger sample sizes are generally desirable

with statistical postprocessing, but since biases may be

seasonally varying, use of, say, 120 days may actually

provide a worse result and double the data storage.

Ideally, were the model unchanged over a multiyear

period, the training data would include the previous

year’s data during the same season. Writing code that

could permit different training samples for different

constituent models depending on the number of days

since the last implementation was judged too difficult for

the time being. NOAA also has limited storage on its

supercomputers, and storage of more than 60 days’

worth of training data was also judged to be impractical

for the time being.

Precipitation forecast data was ‘‘budget’’ interpolated

(Accadia et al. 2003) onto the 1/88 grid spacing of the

analyzed data. In the current National Blend product,

there is a final step of interpolating the postprocessed

POP12 and QPF06 results onto a 2.5-km grid. In the

future, postprocessing may occur directly on the 2.5-km

grid, but for present purposes, results are presented only

for the 1/88 output.

a. Forecast data

The primary data sources in this study were global

ensemble forecasts from the NCEP Global Ensemble
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Forecast System (GEFS) and the Canadian Meteoro-

logical Center (CMC) Ensemble Global Environmental

Prediction System (GEPS). Deterministic forecasts

from the NCEP Global Forecast System (GFS) and the

CMC Global Deterministic Prediction System (GDPS)

were also used. In the future, the NWS hopes to be able

to leverage a greater range of data, including shorter-

range forecasts from NWS models and possibly data

from other prediction centers.

The version of the NCEP GEFS used in this experi-

ment is described by Zhou et al. (2016, manuscript

submitted to Wea. Forecasting) and this version went

into operation on 2 December 2015. The GEFS used the

NCEP Global Spectral Model (GSM) version 12.0.0

(described online at http://www.emc.ncep.noaa.gov/

GFS/impl.php), and in turn the GSM used the model

settings implemented on 14 January 2015. The GEFS

horizontal resolution was T574 (spectral with triangular

truncation at wavenumber 574) to day 18 and T382

thereafter to day 116, corresponding to respective grid

spacings of approximately 27 and 40km at 408N. The

GEFS system used 64 vertical levels. Twenty ensemble

members were generated for each cycle. Model un-

certainty was generated through the stochastic total

tendency perturbations of Hou et al. (2008). Initial

conditions were generated with ensemble Kalman filter

(EnKF) perturbations centered around a control anal-

ysis generated with a hybrid EnKF–4D-variational

analysis procedure (Kleist and Ide 2015a,b). The hybrid

analysis used 75% weighting of EnKF covariance esti-

mates and 25% weighting of static covariances.

The deterministic forecasts from the NCEP GFS used

the GSM version 12.0.0, which provided forecast data at

T1534 resolution on a reduced Gaussian grid with a grid

spacing of approximately 10 km at 408N for forecasts

to 1240-h lead. Semi-Lagrangian time stepping was

used. For forecasts from1240 to1384 h, the horizontal

resolution was T574. Sixty-four vertical layers are used,

with a model top at 0.3 hPa. Assimilation was the same

as described for the GEFS above. Other model changes

are described online (http://www.emc.ncep.noaa.gov/

GFS/impl.php).

The CMC GEPS dataset used in this study was pro-

duced using version 4.1.1 of their software, described in

Gagnon et al. (2014, 2015). The GEPS used in turn the

Canadian Global Environmental Multiscale Model

(GEM) version 4.6.3, with the basic computational dy-

namics described in Cote et al. (1998a,b). Data assimi-

lation for defining the GEPS initial conditions used a

256-member EnKF described in Houtekamer et al.

(2014). The horizontal grid for assimilation was 800 3
400, providing a grid spacing of ;38km at 408N. The

ensemble forecast system was computed on the same

grid with 40 vertical levels. A model change log for the

Canadian prediction systems is available online (http://

collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/

docs/changes_e.html). One notable feature of the GEPS

system was the use of multiple parameterizations that

differed from one member to another (Gagnon et al.

2014, 2015), instituted to provide a larger amount of

spread. A consequence of this was that CMC GEPS en-

semble members were not exchangeable (i.e., different

members may have different precipitation forecast bia-

ses). This required the archival of separate forecast CDFs

for each GEPS member and member-by-member quan-

tile mapping, discussed in section 5c.

b. Analyzed precipitation data

Precipitation analyses for training and verification

were obtained from the Climatology-Calibrated Pre-

cipitation Analysis (CCPA) dataset described in Hou

et al. (2014). As described in the article, the CCPA

makes statistical adjustments to NWS Stage IV pre-

cipitation products so that they are more consistent with

NCEPClimate Prediction Center gauge-based analyses.

The CCPA was judged to be of high quality, though the
1/88 grid spacing was larger than desirable, given the ul-

timate forecast product was requested on a 2.5-km grid.

In the future, it is expected that 1/88 CCPA data will be

replaced by other, higher-resolution precipitation ana-

lyses where available.

This study produced 12-hourly probability of precipita-

tion forecasts and 6-hourly accumulated deterministic

precipitation forecasts. Accordingly, we extracted both

6- and 12-hourly accumulated precipitation from the

CCPA dataset for similar time periods to match the

QPF06 and POP12 forecasts. For this study, precipitation

was extracted, processed, and validated on an 1/88 grid

over the CONUS. Only grid points inside the CONUS or

over the Columbia River basin in Canada and a few other

small basins north of the U.S.–Canadian border were

considered here.

In the definition of supplemental locations discussed

in the next section, a longer time series of CCPA data

was used, spanning 2002–15, as opposed to the prior

60 days used for the quantile mapping conditional bias

correction procedure to be described in section 5c. The

longer time series of CCPA data permitted a more ac-

curate estimate of the precipitation climatology.

3. Verification methodologies

a. Probabilistic forecast verification

Acommonway of evaluating probabilistic predictions

from ensembles is through the use of reliability diagrams
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(Wilks 2011, section 8.4.4). The reliability diagrams as-

sess the relationships between the forecast probability

(in this case, for the event of 12-h accumulated

precipitation$ 0.254mm)1 and the observed frequency.

A 1 to 1 relationship is desirable (i.e., in instances when a

30% probability is forecast, that analyzed event fre-

quency should be 30%). In this study, reliability was

evaluated for 21 bins between 0%and 100%.Alongwith

reliability curves, inset histograms are included that

provide the frequency with which forecasts of various

probabilities were issued. The inset histograms pro-

vide information on how sharp the forecasts were (i.e.,

the extent to which they issued more ones or zeros and

fewer intermediate probability forecasts). The ultimate

goal is maximal forecast sharpness subject to reliability

(Gneiting et al. 2007).

Additionally, Brier skill scores (BSSs) for the POP12

event are provided. The BSS is calculated relative to

climatology, where climatology is determined uniquely

for each month of the year and each 1/88 grid point in-

side the CONUS from the 2002–15 CCPA dataset.

BSS is calculated here in a rather conventional way

(Wilks 2011, section 8.4.2), rather than more involved

methods such as Hamill and Juras (2006) that guard

against falsely attributing skill due to geographic vari-

ations in climatological event frequency. This sim-

pler version of the BSS is acceptable for evaluating

relative changes of skill with changes in the system, as

we are interested in here. The more involved calcula-

tions are preferred if quantifications of absolute skill

are desired.

The conventional method for calculating BSS is as

follows. For a particular forecast lead time, letP(l, c) be

the forecast of POP12 at location l (a tuple of the i and j

indices) and the case day c, 0# P(l, c)# 1. There are L

overall locations in the CONUS and C case days, and

associated with each location l is a latitude f(l), which

is used to provide a weight to the sample proportional

to the grid box area so that grid boxes at northern lat-

itudes do not have undue influence on the results. The

analyzed event O(l, c) is set to 1.0 if the analyzed pre-

cipitation is $0.254mm, and it is set to 0.0 if the ana-

lyzed precipitation is ,0.254mm. The Brier score of

the forecast BSf is then calculated as a grid-box-size

weighted sum of the average squared error of the

probability forecast:

BS
f
5

1

LC
�
L

l51
�
C

c51

cos[f(l)][P(l, c)2O(l, c)]2

1

LC
�
L

l51
�
C

c51

cos[f(l)]

. (1)

The Brier score of climatology (BSc) is calculated simi-

larly. We define Pc(l, c) as the climatological event

probability of $0.254mm in the 12-h period, as de-

termined from 2002–15 CCPA data. This climatology is

determined separately for each grid point l and for each

month of the year. Then,Pc(l, c) replacesP(l, c) in Eq. (1)

when calculating BSc. The BSS is then calculated as

BSS5 12
BS

f

BS
c

. (2)

A perfect probability forecast has a value of 1.0, and a

forecast of 0.0 has the same skill as climatology. Some

studies also provide a decomposition of the BSf into

components of reliability, resolution, and uncertainty

(Wilks 2011, section 8.4.2). However, since this de-

composition is only strictly valid when samples are

drawn from a population with the same underlying dis-

tribution (Hamill and Juras 2006), plots based on this

decomposition are omitted.

b. Deterministic forecast verification

Equitable threat scores (ETSs) and bias (BIA) are

determined in standard fashion following Wilks (2011,

Eqs. 8.18 and 8.10 respectively), though again they may

overestimate the magnitude of the actual skill by ne-

glecting variations in climatological event probabilities

(Hamill and Juras 2006). These standard scores are

presented here, as their use is common in the NWS. ETS

and BIA are generated by populating a contingency

table with bins for (forecast, event) pairs. Let F(l, c)

denote the ensemble-mean forecast at location l and

case day c, and O(l, c) is the analyzed value. The event

threshold again is T 5 0.254mm. Now, define an in-

dicator variable for the event of the forecast and ana-

lyzed being greater than or equal to the threshold

amount:

1
F$T,O$T

(l, c)5 1 if F(l, c)$T

5 0 if F(l, c)#T . (3)

We then denote a as the grid-box-size weighted number

of samples associated with both the forecast and ana-

lyzed exceeding a particular event threshold:

a5 �
L

l51
�
C

c51

1
F$T,O$T

(l, c) cos[f(l)]. (4)

1 Eventually the National Blend is expected to provide more full

PQPFs (i.e., exceedance probabilities for many other events with

different precipitation thresholds). For brevity and because the full

PQPF products are still in development, verification of other pre-

cipitation thresholds will be omitted in this study.
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Similarly, b is defined as the grid-box-size weighted

number of samples when the forecast was equal to or

exceeded T but the analyzed did not. Here, c is the

weighted number of samples when the forecast did not

exceed T but the analyzed equaled or exceeded T, and

d is the weighted number of samples when both the

forecast and analyzed were below T. Then, the ETS is

calculated as

ETS5
a2 a

ref

a2 a
ref

1 b1 c
, (5)

where aref 5 (a 1 b)(a 1 c)/(a 1 b 1 c 1 d). If all

samples are drawn from a population with the same

underlying climatology, then ETS 5 1 for a perfect

forecast and 0 for a forecast with the skill of climatology.

In this situation, we are computing ETS using samples

from locations with wide variations in their climatol-

ogies, and hence positive ETS may be reported even

when skill is zero (Hamill and Juras 2006).

Bias is also calculated using contingency table ele-

ments. Bias is defined as follows:

BIA5
a1 b

a1 c
. (6)

An unbiased forecast has a value of 1.0; bias exceeding

1.0 indicates the events are overforecast on average, and

bias below 1.0 indicates the events are underforecast on

average.

4. Augmenting training sample size with
supplemental locations

Before describing the supplemental location meth-

odology, we propose a rationale for doing so. Suppose

we had a practically infinite time series of reforecasts

and associated high quality analyses, say four or more

decades of daily gridded forecast and analysis data,

and with the underlying observing system stable during

the period. Were we to examine the systematic errors

for a particular member of that prediction system, we

would notice biases that were both location dependent

and location independent. Location-dependent bias

might be related to the local climatology and terrain

elevation and orientation (or aspect). For precipita-

tion, it is likely that the bias has some seasonality,

varying from winter to summer. Bias may be con-

ditional upon the forecast amount (i.e., different

for 1- versus 10-mm forecasts). With additional ex-

ploratory data analysis, we might discover further

conditional biases—perhaps the model overforecasts

precipitation on a westerly wind and underforecasts

precipitation on an easterly wind. Perhaps bias differs

with the phase of El Niño–La Niña or with other low-

frequency modes of oscillation.

Additionally, the forecast guidance may exhibit bias

that is largely independent of location. It has previ-

ously been noted (e.g., H12) that many global forecast

models often systematically overforecast the occur-

rence of light precipitation amounts and underforecasts

heavy amounts (e.g., Moore et al. 2015). These may be

due to, say, deficiencies in the model numerics or its

parameterization suite.

We are presented with a practical problem in statis-

tical postprocessing—the challenge of providing mean-

ingful statistical adjustment to the raw guidance with

limited training data. In this application, a practical

constraint was to provide as much improvement as

possible using only the last 60 days of forecasts; more

would be desirable to increase the sample size, while less

might be desirable given seasonal changes in bias char-

acteristics and frequent model changes with associated

changes in systematic errors. While the use of longer

training datasets such as reforecasts is preferable, in

their absence we aim to still be able to make meaningful

statistical adjustments.

What from the above list of potential biases is prac-

tical to estimate with the most recent 60 days’ worth of

data? What from the above list is important to estimate

with 60 days of data? Assuming we are limited to

training with only the most recent data, estimating bias

conditional upon low-frequency phenomena like El

Niño and La Niña is not practical, and probably there

are not enough data to estimate the possible bias de-

pendency on weather aspects like wind direction. It is

clearly important to correct for widespread systematic

biases. Arguably, too, it is important to try to correctly

estimate gross location-dependent biases if they exist.

To illustrate location dependence of systematic error,

let us examine CDFs for two nearby locations (Fig. 1).

The CDF of the forecast at a particular grid point lo-

cation (i, j) is defined as

F
f
(A

f
)5P(X

f
#A

f
) , (7)

whereAf is a particular precipitation amount andXf is a

random variable for the forecast and analyzed amounts.

A CDF for the analyzed amount Fa(Aa) is defined sim-

ilarly. The CDFs are estimated from the long-term

event-relative frequency using GEFS reforecasts and

only the data specifically at that grid point without data

from supplemental locations so that we can be confident

that systematic errors reflect that particular location.

The percentile associated with a particular precipitation

amount is commonly known as a ‘‘quantile.’’ Figure 1

shows forecast and analyzedCDFs for two nearby points

3446 MONTHLY WEATHER REV IEW VOLUME 145



in southern Oregon, developed with a relatively large

sample: 14 winter seasons of GEFS reforecast data

(Hamill et al. 2013) and accumulated precipitation an-

alyses for124- to148-h forecasts. A 24-h accumulation

period was used here so that biases could not be attrib-

uted to the diurnal cycle. As noted by the large differ-

ences in analyzed and forecast CDFs at the two

locations, these two points have greatly different biases

conditional upon forecast amount. For example, for the

western point in Fig. 1a, the quantile associated with the

15-mm forecasts is associated with the;23-mm analysis.

At the eastern point in Fig. 1b, the quantile associated

with the forecast value of 15mm is associated with

;10-mm analysis. That is, the western grid point has a

dry bias for this forecast amount, and the eastern grid

point a wet bias. Perhaps the smoothed terrain repre-

sentation in the GEFS system was partly responsible.

In any case, this is the sort of repeatable first-order

location-dependent bias that a human forecaster would

prefer to see automatically corrected. Without this

correction, the resulting POP12 forecasts would not

have appropriate terrain-related variability, and a fore-

caster would likely feel compelled to reintroduce it

through manual modification.

In summary, with a short training dataset we would

like at least to be able to correct for spatially invariant

systematic bias and gross location-dependent bias. The

potential location dependence of bias would suggest

performing statistical corrections on a gridpoint-by-

gridpoint basis, not using data from other points. Con-

sistency of forecast biases due to endemic model

problems argues for the pooling of training data across

broader sets of locations to minimize sampling error.

Pooling of training data (e.g., Charba and Samplatsky

2011a,b; Hamill et al. 2008, 2015; Mass et al. 2008; Daly

et al. 2008; Kleiber et al. 2011; Lerch and Baran 2017)

may also be a practical necessity when the training

sample size is small, as it is in this application.

We now discuss the details of the supplemental loca-

tion methodology, first briefly below and then in more

detail in the online supplemental material (see file A).

The presumption underlying the methodology is that

biases can be identified that have commonalities related

to terrain elevation, terrain orientation, and to some

extent on the climatological distribution of pre-

cipitation. If these assumptions are met, then for a given

grid point, it will be possible to identify supplemental

locations with similar precipitation climatologies and

terrain characteristics, and augmenting the training data

with information from these locations will result in re-

duced sampling error for the resultant CDFs with

minimal diminution of the capacity to correctly infer

the location-dependent bias. Presumably, the pop-

ulation of CDFs using the forecast and analyzed data

at additional supplemental locations will help ame-

liorate sampling error while still preserving the ability

to correctly estimate location-dependent biases. It is

also hoped that the resulting CDFs will span a larger

range of weather conditions despite the use of a short

training sample.

Hamill et al. (2015) described an earlier version of

an algorithm to determine the supplemental locations

FIG. 1. Illustration of CDFs for December–February 2002–15 using CCPA analysis data (blue) and GEFS re-

forecast data [red; see Hamill et al. (2013) for more on reforecasts: CDFs (a) for 428N, 1248W and (b) for 428N,

1238W. Locations are denoted by the black dots on the inset maps.
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tailored toward the larger samples available with re-

forecasts. In that application, postprocessing at a

particular forecast was based on the training data not

only from the forecast grid point but also using data

from 20 other supplemental locations. Postprocessed

skill was increased, especially for higher amounts.

Also, Hamill et al. (2008; see Fig. 2) demonstrated

how omitting the use of supplemental locations re-

sulted in undesirable small-scale variability in prob-

abilistic quantitative precipitation forecasts (PQPFs)

when postprocessed with logistic regression. For the

current application, where a much smaller training

dataset is available (again, only the last 60 days), a

modified algorithm is presented that specifies a greater

number of supplemental locations. It is similar in

concept to the methodology in Hamill et al. (2015), but

different in a few details; the specific algorithmic de-

tails of the supplemental locations are described in full

in file A in the online supplement.

As was illustrated in Fig. 1, indiscriminate use, say, of

other surrounding data points based solely on proximity

can provide substandard adjustments for conditional

bias. In the current procedure, for each ‘‘target’’ grid

point where a postprocessed forecast was produced, a

set of supplemental locations was defined based on the

similarity of terrain characteristics, analyzed pre-

cipitation climatologies, and horizontal distance. Sup-

plemental locations were also required to be spaced

some minimum distance from the target point and from

each other to provide more independent samples. The

selection of supplemental locations was based on the

minimization of a penalty function. The first supple-

mental location was defined as the location with the

smallest penalty (i.e., the smallest weighted difference in

precipitation climatology, terrain characteristics, and

distance), while maintaining a minimum distance from

the original grid point. The second supplemental loca-

tion was similarly defined, but it was also required to

be a minimum distance from both the target and the first

supplemental location. Definitions of the third, fourth,

and subsequent locations proceeded similarly in an it-

erative manner. Each grid point in the contiguous

United States had a minimum of 50 supplemental loca-

tions defined, though for regions where a larger number

could be found with relatively small penalty functions,

up to 100 supplemental locations were defined. This

FIG. 2. Illustration of supplemental locations for the month of April. Larger symbols denote the locations

for which supplemental locations were calculated (roughly Portland, OR; Phoenix, AZ; Boulder, CO;

Omaha, Cincinnati, OH; and New York City, NY). Smaller symbols indicate the supplemental locations.

Darker symbols indicate a better match, and lighter symbols a poorer match. The colors on the map denote

the 95th percentile of the 24-h accumulated precipitation amounts for the month, determined from 2002–15

CCPA data.
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typically increased the number of supplemental loca-

tions in flatter, drier areas.

Figure 2 illustrates the supplemental locations that

were defined for several preselected grid points for the

month of April; separate supplemental locations were

calculated for each month. The 95th percentile of the

24-h accumulated precipitation climatology determined

from the 2002–15 CCPA dataset is underlain for refer-

ence. As shown in Fig. 2, the supplemental locations are

prevented from being too close to each other by design

so as to potentially provide a more independent set of

samples spanning a larger range of weather conditions.

The algorithm, as intended, exhibits the tendency to

define the supplemental locations based on the similar-

ity of precipitation climatology. Notice, for example,

that supplemental locations for Omaha, Nebraska, and

Portland, Oregon, tend to occur more preferentially at

locations with similar 95th percentiles of climatology.

Though not shown, terrain height and orientation

(facet) also were factors in the selection of the particular

locations. Similar plots for different months are shown

in online file A.

Supplemental locations are not a panacea for all of the

problems of precipitation bias correction. The current

algorithm may still not provide realistic estimates

in situations where the recent past has encountered

unusually widespread dry or wet weather. For example,

should the region surrounding a grid point of interest be

experiencing a large-scale extended drought, the CDFs

populated with the last 60 days of data and supplemental

locations will not resemble the CDFs that would be

generated with multiple decades of data. Consequently,

the accuracy of the subsequent quantile mapping should

be considered suspect if today’s weather is unlike any-

thing that has occurred in the area in the past 60 days.

Another problem is that the CDFs implicitly reflect the

forecast bias of the previous 60 days, which may or may

not reflect the current forecast bias; after all, pre-

cipitation biases may change with seasons, from winter

seasons over the CONUS dominated by nonconvective

rainfall to summer seasons more affected by convective

rainfall. Such challenges are largely unavoidable when

postprocessing with a short training dataset.

5. The 12-hourly probability of precipitation
algorithm

The overall process for generating a gridded POP12

forecast is as follows: 1) Populate the CDFs for the

forecast and analyzed data using the past 60 days and the

supplemental location data. 2) Read in most recent de-

terministic and ensemble forecasts from the NCEP and

CMC systems, and interpolate them onto the 1/88 grid of

the precipitation analyses. 3) Perform a deterministic

quantile-mapping procedure to correct for the condi-

tional biases of eachmember. 4) Dress eachmember the

resulting ensemble with randomnoise to introduce some

additional ensemble spread. 5) Form an initial POP12

forecast from the ensemble relative frequency. 6) Perform

a Savitzky–Golay smoothing of the POP12 forecast, ap-

plyingmore smoothing in flatter regions.We now describe

each of the steps in more detail.

a. Populate CDFs

The first step, updating of CDFs, is typically performed

prior to the arrival of the most recent forecast data. The

updating is dependent on the arrival of the most recent

CCPA analysis estimates, which of course arrive after the

forecast data for the same time period. A rolling archive is

maintained of the last 60 days of paired forecast and pre-

cipitation analysis data; when a new day’s data are ready,

the oldest data are discarded. For the GEFS, forecast

CDFs are generated using all members. For the CMC

ensemble, separated CDFs are computed for each mem-

ber given the use of different parameterizations or pa-

rameters for individualmembers, with potentially different

forecast biases. Separate archives of forecast–observation

pairs aremaintained for each forecast lead time in question

(e.g., 12, 24, 36h, and so forth) to permit estimation of lead-

time dependent CDFs, since biases may vary with forecast

lead or over the diurnal cycle.With the last 60 days of valid

data and with the supplemental locations predetermined,

CDFs cannowbe generated. For a particular lead time, the

last 60 days of forecast and analyzed data are input, as are

the files of supplemental locations. For each 1/88 grid point

determined to be inside the CONUS or the Columbia

River basin in Canada, a CDF is populated separately for

the interpolated forecast and the analyzed data, using data

from that grid point and from the predefined supplemental

locations. The resulting CDF data for each grid point

consists of a pair of vectors: one denoting ordered accu-

mulated precipitation amounts and the other indicating the

cumulative nonexceedance probability (i.e., the probabil-

ity that the analyzed or forecast result is lower than or

equal to the amount; see Eq. (7)]. This is based simply on

the relative frequency in the training data.

b. Interpolation of forecast data to 1/88 grid

The second step, the input of forecast data and in-

terpolation onto the 1/88 grid of the CCPA, is rather

straightforward. ‘‘Budget’’ interpolation is used (Accadia

et al. 2003).

c. Quantile mapping of each member

The third step, a deterministic quantile-mapping

procedure, is more involved. First, we review the
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concept of quantile mapping, as this lies at the heart of

the algorithm. Equation (7) provided a definition of the

CDF. There is also an inverse distribution function, also

known as the quantile function, whichmaps from a given

cumulative probability back to a precipitation amount.

For example, for a precipitation forecast, the quantile

function is

A
f
5F21

f (p), p 2 [0, 1]. (8)

Quantile mapping, which generates a bias-corrected

precipitation amount conditional on the input forecast,

Af/a, can thus be expressed as

A
f/a

5F21
a [F

f
(A

f
)] . (9)

The quantile of the CDF associated with today’s fore-

cast amount is identified, and then the bias-corrected

forecast amount is determined from the analyzed

amount associated with the same quantile [see Fig. 2

in Hamill and Whitaker (2006) for an illustration of

the concept]. In the application to POP12, the quan-

tile mapping procedure is repeated for every member

of the multimodel, multicenter forecast ensemble.

After quantile mapping, the resulting ensemble has

members that have more exchangeable error charac-

teristics and that are more consistent with draws from

the analyzed climatological distribution. Ensemble

variability that is due purely to bias differences be-

tween members has been reduced (Eckel and Mass

2005).

For POP12, we introduce some modifications to the

basic quantile-mapping procedure of Eq. (3). A first

modification is introduced to deal with the potential

for the large sampling variability of quantiles at the

extremes. In situations where the quantile associated

with the forecast value is greater than 0.95, quantile

mapping is performed with a regression analysis

modification following Scheuerer and Hamill (2015);

see also file A in the online supplement and Eqs. (1)

and (2) above.

Another modification is in the synthetic enlarge-

ment of the ensemble size. When processing a given

grid point (i, j), quantile mapping uses not only data at

(i, j) but forecast data at eight surrounding grid points

as well (Figs. 3 and 4). Forecast CDFs and pre-

cipitation forecast amounts are used from each of the

locations in the 3 3 3 array, but the quantile mapping

only uses the analyzed CDF from the center grid

point, thereby attempting to render the 3 3 3 array of

forecasts to be plausible as draws from the central

point’s analyzed climatology. A related application of

this underlying technology was first described in

Scheuerer and Hamill (2015); see also Fig. 2 and the

associated text. Some underlying rationales for the

use of the 3 3 3 array in this application are that 1)

ensemble size is limited, and methods for realistically

increasing ensemble size may ameliorate sampling

error, and 2) ensembles frequently have small-to-

moderate position errors, and quantile mapping us-

ing forecasts from other nearby positions provides

some robustness against position errors. In the Na-

tional Blend version 3.0 described here, the 3 3 3 ar-

rays of points were spaced 3/88 apart from each other

at 112-h lead, linearly increasing to 13/48 apart

at 1240-h lead. Ideally, the optimal grid spacing

would be identified through extensive testing of mul-

tiple separation values. The chosen values were in-

stead informed by trial and error.

Figures 3 and 4 provide a practical application of the

methodology for a grid point in Northern California.

The surrounding grid points have forecast CDFs that

vary from rather dry (Fig. 3c) to nearly as wet as the

analyzed state (Fig. 3e). Consequently, there are a va-

riety of mapping functions, shown in Fig. 4, reflecting the

spatially dependent adjustments that are made for each

of the nine grid points as they are individually adjusted

to be consistent with the analyzed sample climatology at

the central point.

By quantile mapping using this 3 3 3 stencil of data

points, one can imagine very different resulting ensem-

bles and POP12s for differing weather scenarios. Con-

sider first a situation with a widespread area of moderate

precipitation. In this case, a high forecast quantile will

be identified for each of the nine locations, with

presumably a moderate or higher number of quantile-

mapped analyzed amounts across the 33 3 stencil since

Fig. 4 shows an underforecast bias. This will result in a

POP12 presumably near 1.0 estimated from the en-

larged, quantile-mapped ensemble relative frequency.

In a second scenario, forecast precipitation is spatially

scattered, with perhaps a high amount at the central

point but zero precipitation at several other surrounding

points. Quantile mapping using the 3 3 3 stencil of

forecast values will thus produce a larger ensemble with

many zero quantile-mapped values. A lower POP12 will

be generated from the quantile-mapped ensemble rel-

ative frequency relative to the previous scenario with its

widespread moderate precipitation. In this way, the

spatial consistency of the quantiles associated with the

forecast precipitation becomes an implicit predictor

of POP12.

d. Ensemble dressing

Because of sampling error and possible remaining

conditional biases even after a deterministic quantile
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FIG. 3. Illustration of the quantilemapping of data frommultiple locations surrounding a grid point of interest,

here in Northern California. In this case, we are producing a quantile-mapping adjustment to ensemble

members for the center grid point of the nine red dots shown in the insetmap. CDF data are for1120- to1132-h

member forecasts from the NCEP GEFS system initialized at 0000 UTC 6 Apr 2016 using the past 60 days and

supplemental locations. Rather than quantile mapping the 20 GEFS members only at the center point [in (e)],

we quantile map the 20 GEFS forecasts at each of the nine locations with red dots. The quantile mapping uses

the CDF of the forecast at each of the nine grid points [red curves in (a)–(i)] and the analyzed data at the center

grid point in (e). The resulting ensemble at the center point has ninefold more members.
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mapping, the range of the ensemble can still be too

narrow, resulting in suboptimal POP12 reliability. The

fourth step in the POP12 algorithm is thus the dressing

of the ensemble with random, amount-dependent

noise. Adding noise to each forecast member consis-

tent with the statistics of errors of the member that is

closest to the verification will improve the POP12

generated from the resulting dressed ensemble. The

procedure was inspired by the ‘‘best member’’ en-

semble dressing concepts of Roulston and Smith

(2003) and Fortin et al. (2006), as well as the kernel

fitting in the precipitation BMA algorithm of Sloughter

et al. (2007).

For this application, random noise is drawn from a

normal distribution whose mean is zero and whose

standard deviation is 0.25 1 0.5 3 the quantile-mapped

value, that is, ;N[0, (0.25 1 0.5Af/a)
2]. If the resulting

dressed forecast has a negative value, it is reset to zero.

The noise magnitudes were arrived at through both trial

and error and through their similarity to objectively

determined Gamma-distribution dressing statistics that

may be incorporated into a future version of the

National Blend (not shown). The dressing procedure is

illustrated in Fig. 5. This shows the shifts in mean posi-

tion due to the deterministic quantile mapping for sev-

eral forecast values and the implied pdf of the dressing

distributions.

e. Estimating POP12 from ensemble relative
frequency

The fifth step is simple. Estimate the POP12 from

the enlarged ensemble’s relative frequency. The

NWS threshold for POP12 is 0.01 in., or ;0.254mm.

Hence, the POP12 is determined by counting the

number of quantile-mapped, dressed ensemble

members equal to or exceeding 0.254mm and di-

viding by the total number of members. With the use

of eight surrounding data points, the effective en-

semble size is now 9 times larger than the size of the

original MME.

f. Location-dependent Savitzky–Golay smoothing

The sixth step, a location-dependent Savitzky–

Golay smoothing, is conceptually relatively simple but

FIG. 4. Deterministic quantile mapping functions for each of the locations in Fig. 3.
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algorithmically more complicated. With a few modifi-

cations, the algorithm follows the procedure outlined in

Hamill et al. (2015); see also file A in the online sup-

plement. The underlying premise is this: probabilities

estimated from the ensemble are subject to sampling

error, and this may result in POP12 forecasts that

emerge from step 5 above to have small-scale noisiness

that is visually distracting and meteorologically

meaningless. An exception to this may be in moun-

tainous regions such as the western United States,

where there could be realistic and small-scale geo-

graphic variations of POP12 related to terrain fea-

tures. Hence, it would be desirable to provide some

smoothing of the POP12 forecasts, with more

smoothing applied in the flatter central and eastern

United States than in the mountainous western United

States. The smoothing should also preserve the char-

acter of coherent maxima.

Savitzky–Golay (S-G) smoothing, described and jus-

tified in Press et al. (1992), is a suitable algorithm for

smoothing. As opposed to boxcar smoothers (taking the

arithmetic average of surrounding grid points), the S-G

smoothing fits a local polynomial, and if higher-order

polynomials are chosen by the user, then the S-G

smoother can preserve much of the amplitude of even

small-scale coherent features while smoothing in-

coherent ones. For this application, the S-G smoothing

was applied to the 2D array of POP12 forecasts fitting a

FIG. 5. Illustration of the dressing procedure. CDFs are shown for CCPA analyses (blue) and

for NCEP ensemble precipitation forecasts (red). Here, the forecasts were for1120- to1132-h

lead for 47.758N, 123.758W initialized at 0000 UTC 6 Apr 2016. For initial precipitation

amounts of 3, 6, 10, 15, and 20mm, the underlying pdfs for the dressing are shown in the black

curves. The pdfs are normal distributions with means centered on the quantile-mapped values.

Per the text, the standard deviations for the stochastic noise are set to 0.25 1 0.5 3 quantile-

mapped values.
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third-order polynomial using data in a region6 four grid

points around the grid point of interest. More details on

the algorithmic specifics are provided in file B of the

online supplement.

With the raw POP12 field and the S-G smoothed field,

the final POP12 is generated from a linear combination

of the two, with more weight applied to the S-G

smoothed field in regions with flatter terrain. Again,

more details are presented in file B of the online

supplement.

Figures 6 and 7 present a case study that illustrates

each major step of the postprocessing. Data shown are

for 1120- to 1132-h forecasts initialized at 0000 UTC

6 April 2016. First, Fig. 6a shows the analyzed pre-

cipitation amounts used for verification. Areas inside

the black contour are above 0.254mm. Figures 6b and

6c show the POP12 forecasts from the NCEP GEFS

and CMC systems, respectively, determined from the

ensemble relative frequency. Both the NCEP and

CMC ensembles, even at this advanced lead time,

have high POP12 probabilities covering much of the

country, including the mountainous western United

States. The deterministic forecasts from each center

are not shown. Figure 6d next shows theMMEPOP12,

combining the data from the raw ensembles. The

probabilities are not as sharp, for the areas where the

NCEP and CMC systems have their highest proba-

bilities differ somewhat. For example, the NCEP

system has 100% probabilities over much of Texas

while the CMC system does not. As will be shown in

FIG. 6. Case study illustrating the steps of the POP12 algorithm, here for1120- to1132-h forecasts initialized at 0000 UTC 6 Apr 2016.

(a) The verifying precipitation analysis; areas inside the black contour exceed the 0.254mm (12 h)21 POP threshold. The POP12 results

derived from ensemble relative frequency from the (b) NCEP and (c) CMC systems. (d) The combined NCEP 1 CMC raw multimodel

ensemble POP.
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section 7, however, POP12’s from the raw MME are

still too sharp. Figure 7a illustrates the POP12 after

application of deterministic quantile mapping using

only the central grid point, and Fig. 7b shows POP12

when using the full 3 3 3 stencil of points when

quantile mapping. The use of the 3 3 3 stencil gener-

ally lowers high probabilities slightly and provides

somewhat greater accentuation of the terrain-related

variability of POP12 in the western United States.

Figure 7c shows POP12 after dressing with the random

normal noise. Small-scale noise is introduced, along

with a further reduction of the high-end POPs and some

elevation of low-end POPs. Finally, Fig. 7d shows the end

product, after application of the location-dependent S-G

smoothing. Much of the small-scale variability outside of

themountainous regions of the westernUnited States has

been reduced.

6. The 6-hourly quantitative precipitation forecast
algorithm

Before providing a description of the details of

QPF06, it is worth considering the changes in pre-

cipitation characteristics we can expect from ensemble

averaging, as the ensemble mean might be considered

as a surrogate deterministic forecast. Figure 8a, in-

spired by a similar figure in Ravela et al. (2007),

shows a synthetic ensemble of precipitation forecasts

with different east–west positions and slightly different

amplitudes. Presumably, this bears some resemblance to

FIG. 7. A continuation of the case study illustrating steps in the POP12 algorithm, here for 1120- to 1132-h 7891 forecasts initialized at

0000 UTC 6 Apr 2016. The POP12 results after (a) the application of deterministic quantile mapping using only the grid point in question,

(b) the application of deterministic quantile mapping using the 33 3 stencil of grid points, (c) dressing of each member with Gaussian noise,

and (d) the final S-G smoothing.
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what forecasters might see in a typical medium-range en-

semble forecast. Let us assume the truth could be any one

of these ensemblemembers; that is, the ensemble and truth

are assumed tobe exchangeable.Because of the diversity of

ensemble positions, the mean forecast in Fig. 8a un-

derestimates the amplitudes of the maximum relative to

individualmembers and the potential truth, and the span of

the east–west position with light precipitation in the en-

semble mean is broader in scale than the members or the

truth. Hence, while in ideal situations the ensemble-mean

forecast will minimize the root-mean-square (RMS) error,

tallied over many cases it does not provide the forecaster

with a reasonable estimate of the potential magnitude of

the heaviest precipitation, and it forecasts toowide a region

with nonzero precipitation.

Underlying the QPF methodology developed here is

the assumption that a forecaster cares less about the

minimization of error and instead seeks from

deterministic guidance the following: (i) an estimate of

the most likely position of a precipitation maximum and

(ii) an accurate estimate of the maximum precipitation

possible. Further, we assume that a forecaster implicitly

understands the potential for some position error and is

able to convey the spatial uncertainty in associated

worded discussions. In a statistical sense, the forecaster

is assumed to prefer deterministic guidance that is un-

biased (Wilks 2011, Eq. 8.10); that is, for any particular

precipitation amount, the expected areal coverage of the

forecast exceeding that amount is equal to the areal

coverage of the analyzed exceeding that amount.

A relatively simple method is now described that

leverages the POP12 technology, in particular the de-

terministic quantile mapping of Eq. (3). Rather than

quantile mapping an individual ensemble member using

CDFs populated with member forecast data and ana-

lyzed data, we simply quantile map from the ensemble-

mean state to the analyzed state. Figure 8b illustrates

whatmight occur with such a quantilemapping approach,

giving the characteristics of the ensemble mean noted in

Fig. 8a. Notice that there are fewer zero-precipitation

events in the ensemble mean and also fewer heavier-

precipitation events. Consequently, a relatively light

ensemble-mean amount may be quantile mapped to a

zero precipitation, and a moderate ensemble-mean

amount may be mapped to a much heavier amount.

The QPF06 algorithm is thus as follows. 1) Populate

the CDFs for the ensemble-mean forecast and analyzed

data using the past 60 days and the supplemental loca-

tion data. 2) At each grid point, quantile map the current

ensemble-mean forecast values using the forecast and

analyzed CDFs generated in step 1. No 3 3 3 stencil of

surrounding points is used for the QPF06 application. 3)

Apply the same S-G smoothing procedure to the

ensemble-mean forecast as was applied to the POP12s,

providing more smoothing in areas of flatter terrain.

An example of the process is shown in a case study

(Fig. 9). Figure 9a shows the ensemble-mean fore-

cast, here for 1126- to 1132-h forecasts initialized at

0000 UTC 6 April 2016. Larger ensemble-mean pre-

cipitation amounts are forecast in north-central Colo-

rado and southeastern Kansas, but these mean forecasts

are 7–10mm. The northwesternUnited States is covered

with a broad shield of lighter ensemble-mean pre-

cipitation amounts. After quantile mapping of the mean

forecast, the maximum in northern Colorado is in-

creased to 20–30mm, and the maximum in southeast

Kansas is increased to 10–15mm. The area with nonzero

precipitation in the northwest United States is sub-

stantially decreased. The subsequent smoothing of

the features in Fig. 9c does not greatly change the look of

the forecast product. Finally, comparing against the

FIG. 8. (a) Illustration of an ensemble of synthetic precipitation

amounts along a segment of a latitude circle that spans a forecast

heavy-precipitation event. Ensemble members (solid colored

curves) differ somewhat in position and amplitude. The ensemble-

mean amount is also shown by the heavier dashed black curve.

(b) Illustration of the shapes typical of CDFs from ensemble-mean

forecasts and analyzed states.
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verification in Fig. 9d, we see that the quantile-mapped

forecasts incorrectly placed the maximum in northern

Colorado; the closest associated analyzedmaximumwas

;20mm in southeast Colorado. Precipitation in excess

of 50mm was analyzed in northeast Oklahoma, close to

the quantile-mapped maximum in southeast Kansas.

Quantile mapping increased amounts by 50% or more

in the region, yet this was not enough. The less wide-

spread precipitation in the northwest United States

produced a better degree of correspondence with the

analyses. Overall, there appears to be a greater simi-

larity of the quantile-mapped and smoothed forecasts to

the analyzed data than for the ensemble mean. We also

note that deterministic precipitation forecasting for

such long leads is notoriously difficult; probabilistic

methods at these advanced leads is preferable, given the

substantial growth of chaotic errors in numerical pre-

cipitation forecasts.

This methodology was inspired by a related method,

the ‘‘probability-matched mean’’ described by Ebert

(2001). There are differences, though. In the current

approach the ensemble mean is quantile mapped

to analyzed data, whereas in Ebert’s approach, themean

is mapped to resemble the original forecast-member

data.

7. Objective forecast verification

We first perform a basic verification of the POP12 fore-

casts using reliability diagrams and BSSs. Figures 10–12

provide reliability diagrams and BSSs for forecasts of

leads 112 to 124, 184 to 196, and 1156 to 1168 h,

respectively. The top panels in each figure show the

reliability of raw individual models and the multimodel

guidance verified against the 1/88 analyses. The associ-

ated BSSs are also noted in the diagrams. The bottom

panels show reliability after postprocessing, with

center-point (panel d) and 3 3 3 (panel e) quantile

mapping, then with subsequent dressing (panel f) and

smoothing (panel g). The general unreliability of the

raw guidance is quite evident, and the multimodel

combination only provides an improvement over the

better of the two systems at the longer leads. After

center-point quantile mapping, both the reliability and

FIG. 9. An example illustrating the steps in the production of a quantile-mapped deterministic1126- to1132-h- forecast

of the 6-hourly quantitative precipitation. (a) Raw, multimodel ensemble-mean forecast. (b) Quantile mapping of the en-

semble mean. (c) After spatial smoothing of the quantile-mapped forecast, and (d) the verifying analysis, for comparison.
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skill are much improved, though there is some under-

forecasting of the POPs at low probabilities and some

overforecast tendency at higher probabilities. Application

of quantile mapping using the 3 3 3 stencil further im-

proves the reliability and skill slightly. Dressing improves

the reliability substantially and the skill only slightly, as

much of the increased reliability has come about through a

corresponding decrease in forecast sharpness. Smoothing

has minimal effect on reliability and skill, though as shown

in Fig. 7d, the unrealistic small-scale spatial detail in non-

mountainous regions is dramatically reduced.

We note that these results represent the verification

against the 1/88 CCPA analyses. Results of verification

against station observations were also performed (not

shown), and there was slightly less reliability against

these point measurements.

Why was there a slight lack of reliability at high

forecast probabilities? We hypothesize but cannot con-

firm that this may be a consequence of the quantile

mapping using the last 60 days of training data in the

presence of seasonally dependent model biases; that is,

the quantile mappings were somewhat inaccurate in

their adjustment for amount-dependent bias. Also, the

structure of the stochastic noise added was determined

more through trial and error than through objective verifi-

cation. We expect to addressed this in subsequent research.

We have not developed another algorithm in the

literature to use as a basis for comparison. However,

one can get a sense of the skill improvement of these

forecasts by comparing against previously published

results using GEFS reforecasts, albeit for a different

period. In Hamill et al. (2015), GEFS reforecasts dur-

ing the 2002–13 period were postprocessed (cross val-

idated) with an analog approach and using the same 1/88
CCPA data. In that study, the GEFS BSSs for

exceeding . 1mm (12 h)21 averaged over April–June2

were;0.38 at 12–24 h, 0.21 at 84–96 h, and 0.07 at 156–

168 h. These are compared to the current 0.453, 0.286,

and 0.129 values, respectively (Figs. 8–10). The im-

provements from leveraging multimodel ensemble data

here, plus a methodology tailored to exploit the most from

small sample sizes, appeared to result in an improvement

FIG. 10. Reliability diagrams (red curves) for 112- to 124-h POP12 forecasts over the CONUS, providing the observed relative

frequency for a given forecast probability. Error bars represent the 5th and 95th percentiles from a 1000-sample bootstrap distribution

generated by sampling case days with replacement. Histograms in gray show the overall frequency with which forecasts of a given

probability are issued (scale on the right), and BSSs are noted. (a) Raw NCEP ensemble forecasts, (b) raw CMC ensemble forecasts,

(c) rawmultimodel ensemble forecasts, (d) postprocessed guidance after stochastic quantile mapping using the center point only, (e) after

stochastic quantile mapping using 3 3 3 stencil of points, (f) after dressing, and (g) after smoothing.

2 Previous experiments (not shown here) have indicated that

BSSs for the.0.254 and the.1.0mm events were quite similar for

postprocessed guidance from GEFS reforecasts.
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with respect to reforecast-based, single-model post-

processing, at least for the POP12 event analyzed here.

Now consider the verification of deterministic fore-

casts (Fig. 13). Equitable threat scores are improved

slightly with the postprocessing for higher precipitation

amounts, though there is a slight diminishment, for

example, with lighter precipitation at moderate leads

(Fig. 13b). We note that the ETS has a tendency to

reward skill for the overforecasting of events, pre-

suming there is some relationship of the observed to

the forecast position (Hamill 1999). In some sense, the

postprocessed guidance represents a good-faith effort

to adjust the deterministic ensemble-mean forecast so

the bias of the adjusted precipitation is near 1.0 re-

gardless of the event. As can be seen, this appears to in-

crease its ETS slightly for the higher precipitation

amounts. Biases are not exactly 1.0 for all events, in part

because of the smoothing of the forecasts and in part

because of the regression quantile mapping at extreme

high terciles of the forecast, as described in section 5c.

8. Discussion and conclusions

The NOAA/NWS National Blend of Models proj-

ect is intended to provide objective, nationally consis-

tent postprocessed guidance for key weather elements

in the NWS National Digital Forecast Database. This

article described the postprocessing methodologies

for 12-hourly probability of precipitation (POP12)

and 6-hourly deterministic quantitative precipitation

(QPF06). Model guidance from global deterministic and

ensemble prediction systems from theNationalWeather

Service and Environment Canada (now known as En-

vironment and Climate Change Canada) were used. The

forecasts from these systems were postprocessed

through a procedure known as quantile mapping, a

procedure that permits amount-dependent bias correc-

tions based on the differences between forecast and

analyzed cumulative precipitation distributions. Be-

cause of the limited training data available due to pos-

sibly frequentmodel changes (training data were limited

to the previous 60 days in this application), the un-

derlying cumulative distribution functions (CDFs)

would be highly noisy if the CDFs were populated in-

dependently for each grid point. Accordingly, the ap-

proach demonstrated here also used forecasts and

analyses from supplemental locations to populate the

CDFs. Supplemental locations are other grid points that

were expected to have similar forecast bias character-

istics as a result of the similarity of precipitation clima-

tology and terrain features. Other somewhat novel

features of the POP12 algorithm included (i) the syn-

thetic enlargement of ensemble data by quantile map-

ping data from a 33 3 stencil of surrounding grid points,

(ii) dressing of the ensemble with amount-dependent

random noise to increase the spread of the ensemble, and

FIG. 11. As in Fig. 10, but for 184- to 196-h forecasts.
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(iii) a location-dependent smoothing of the POP12 field,

with more smoothing applied in regions of flat terrain.

The QPF06 procedure also leveraged the supple-

mental locations and the location-dependent smoothing,

but it omitted dressing after the quantile mapping and

the use of the 3 3 3 stencil.

Case studies and objective verification results were

presented for both POP12 and QPF06. These showed

that the postprocessing generates much more skillful

POP12 guidance and much improved reliability. The

postprocessed forecasts also provided a statistical down-

scaling, accentuating forecast POP12 and QPF06 in the

high terrain of the western United States. QPF06

forecasts were much less biased with respect to the ana-

lyzed data, with similar or slightly improved threat scores.

National Blend developers intend to continue to

attempt to improve upon the POP12 and QPF06

guidance. For example, the algorithm described here

did not yet leverage shorter-range, higher-resolution

forecasts from prediction systems such as NOAA’s High-

Resolution Rapid Refresh (Benjamin et al. 2016). In the

future, inclusion of this data is anticipated, either using

the methodologies described here or indirectly (post-

processed in some other way, and then combined with

precipitation estimates through this system). It is also

anticipated that guidance will expand to cover other U.S.

areas of interest such as Alaska, Hawaii, and Puerto Rico

in the next year or so. Temporal resolution may increase

over the CONUS as well.

We are cognizant of the lack of a rigorous experi-

mental control here, though (with some caveats) the

skill of this method appeared to beat those from the

postprocessing of GEFS reforecasts. The lack of a more

rigorous control is in part because of the relatively

unique nature of this work, which intended to produce

national guidance at high spatial resolution using only a

limited amount of training data from coarser-resolution

multimodel ensembles. In part, this is a result of the lack

of publicly available algorithms in our software language

(Fortran). Pending future funding, we do hope to ad-

vance this current methodology and to adapt other ad-

vanced methodologies such as the one described in

Scheuerer and Hamill (2015) and compare forecasts

from these systems.

Another shortcoming is that, for brevity, probabilistic

forecasts were not generated nor verified for events

other than POP12. We presented no evidence here that

this methodology is suitable for, say, predicting events

such as $25mm (12 h)21. Past experience has shown

that it is much more challenging to postprocess the

more extreme events with small training sample

sizes (ibid).

Finally, we acknowledge that there are adjustable

parameters in this postprocessing method that were set

FIG. 12. As in Fig. 10, but for 1156- to 1168-h forecasts.
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in a trial-and-error approach. These include the spacing

between grid points of the 3 3 3 array of data used to

augment the sample size (see Fig. 3 and section 5c) and

the magnitude of the stochastic noise added (Fig. 5). In

the future, it may be possible to use technologies such as

feature calibration and alignment (Nehrkorn et al. 2014)

to estimate the typical magnitude of the displacement of

the forecast features, and how they vary with forecast

lead time. This could be used to set the spacing param-

eter in this methodology.

In the longer term, NOAA intends to regularly pro-

duce reforecast datasets for its global ensemble pre-

diction system, and National Blend developers hope to

leverage similar datasets from international partners.

With these datasets, we expect to be able to improve

upon features of this algorithm, such as defining

the CDFs more precisely, or to leverage or design

more sophisticated postprocessing algorithms that

exploit the rich reforecast data to improve skill and

reliability.
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